Multiple organic anion transporters contribute to net renal excretion of uric acid.
نویسندگان
چکیده
Excretion of uric acid, a compound of considerable medical importance, is largely determined by the balance between renal secretion and reabsorption. The latter process has been suggested to be principally mediated by urate transporter 1 (URAT1; slc22a12), but the role of various putative urate transporters has been much debated. We have characterized urate handling in mice null for RST, the murine ortholog of URAT1, as well as in those null for the related organic anion transporters Oat1 and Oat3. Expression of mRNA of other putative urate transporters (UAT, MRP2, MRP4, Oatv1) was unaffected in the knockouts, as were general indexes of renal function (glomerular filtration rate, fractional excretion of fluid and electrolytes). While mass spectrometric analyses of urine and plasma revealed significantly diminished renal reabsorption of urate in RST-null mice, the bulk of reabsorption, surprisingly, was preserved. Oat1- and Oat3-null mice manifested decreased secretion rather than reabsorption, indicating that these related transporters transport urate in the "opposite" direction to RST. Moreover, metabolomic analyses revealed significant alteration in the concentration of several molecules in the plasma and urine of RST knockouts, some of which may represent additional substrates of RST. The results suggest that RST, Oat1, and Oat3 each contribute to urate handling, but, at least in mice, the bulk of reabsorption is mediated by a transporter(s) that remains to be identified. We discuss the data in the context of recent human genetic studies that suggest that the magnitude of the contribution of URAT1 to urate reabsorption might vary with ethnic background.
منابع مشابه
Effects of Increased Uric Acid Intake on the Abundance of Urate-anion exchanger and Organic Anion Transporter Proteins in the Rat Kidney
Renal handling of uric acid mainly occurs in the proximal tubule, and bidirectional transport of urate may involve apical absorption via the urate-anion exchanger (URAT1) and basolateral uptake via organic anion transporters (OAT1 and OAT3). In rat kidneys, we investigated whether the protein abundance of URAT1, OAT1, and OAT3 is affected by the increase in uric acid intake. Male Sprague-Dawley...
متن کاملRecent advances on uric acid transporters
Uric acid is the product of purine metabolism and its increased levels result in hyperuricemia. A number of epidemiological reports link hyperuricemia with multiple disorders, such as kidney diseases, cardiovascular diseases and diabetes. Recent studies also showed that expression and functional changes of urate transporters are associated with hyperuricemia. Uric acid transporters are divided ...
متن کاملAllopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement.
Fructose consumption has been recently related to an epidemic of metabolic syndrome, and hyperuricemia plays a pathogenic role in fructose-induced metabolic syndrome. Fructose-fed rats showed hyperuricemia and renal dysfunction with reductions of the urinary uric acid/creatinine ratio and fractional excretion of uric acid (FE(ur)), as well as other features of metabolic syndrome. Lowering serum...
متن کاملImmunohistochemical studies of organic anion transporters and urate transporter 1 expression in human salivary gland
BACKGROUND Various substances including uric acid, organic acids and drugs are transported by organic anion transporters (OATs) in the kidney. In addition, a member of the OAT family, urate transporter 1 (URAT1), is involved in the reabsorption of uric acid from the renal tubule. Benzbromarone inhibits URAT1 to block uric acid reabsorption. METHODS Our group previously observed higher salivar...
متن کامل[Mangiferin promotes uric acid excretion and kidney function improvement and modulates related renal transporters in hyperuricemic mice].
The effects of mangiferin on uric acid excretion, kidney function and related renal transporters were investigated in hyperuricemic mice induced by potassium oxonate. Mice were divided into normal control group, and 5 hyperuricemic groups with model control, 50, 100, and 200 mg x kg(-1) mangiferin, and 5 mg x kg(-1) allopurinol. Mice were administered by gavage once daily with 250 mg x kg(-1) p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2008